

"Giga-Cast" Kunststoff

Funktionsintegration & beherrschbare Prozesse

Dr. Ruth Markut-Kohl, Teamleiterin digitale Architektur Spritzgießen

28.04.2025, SPRITZGIESSEN next, Dettingen/Teck

ENGEL Technikum - DUO 5500 combiM

Injection molding processes

ENGEL clearmelt PUR coating

ENGEL coinmelt **ICM**

physical & chemical foaming ENGEL foammelt

ENGEL combimelt multi-component

transparent materials ENGEL Optimelt & glazemelt

Additional equipment

- 2x easix up to 240 kg payload
- Infrared oven retrofittable on request
- Mold temperature up to 160 °C

Mold technologies

- Standard molds
- Spin-stack molds
- Multi-color molds

Injection Unit 23060 M Injection Unit 36000 H \emptyset 150 mm – 7,2 kg PP GF30 Ø 170 mm – 10,4 kg PP GF30 Injection Unit 51000 H

Ø 190 mm – 14,5 kg PP LGF30

ENGEL ENGEL AUSTRIA GmbH | 2

Über ENGEL

Zahlen & Fakten

Gegründet 1945 in Österreich von Ludwig Engel

100% Familienbesitz in der 4. Generation

7280 Mitarbeiter weltweit (GJ 23/24)

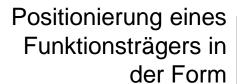
1,6 Mrd. Euro Umsatz weltweit (GJ 23/24)

10 Produktionsstandorte, 30 Niederlassungen, 39 Vertretungen, 20 Trainingszentren, 5 Automatisierungszentren & 11 Technologiezentren weltweit

70 Mio. Euro F&E Ausgaben pro Jahr

Große Fahrzeugteile in einem Stück fertigen

Pain Points


- ➤ Effizienzsteigerung und Kostendruck
- ➤ Leichtere Fahrzeuge e-Mobilität
- Neue Designfreiheiten ermöglichen

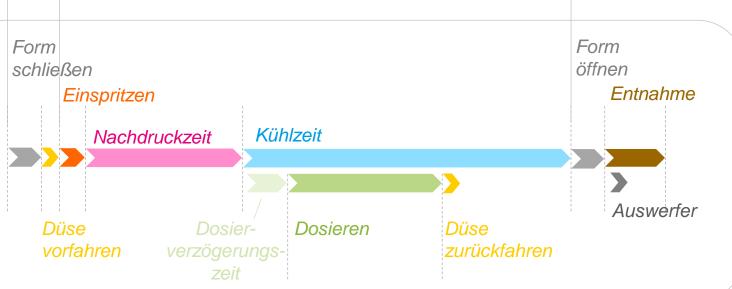
Needs

- niedrigeren Produktionskosten durch Verringerung der Teilezahl im Fahrzeug
- Prozessschritte einsparen
- > Funktionen integrieren
- Produktion: Schnelles Setup und stabile Spitzgießprozesse

Qualität großer Kunststoffteile im Fokus

Organosheets

Smarte Manipulation der Schmelze


Spritzprägen

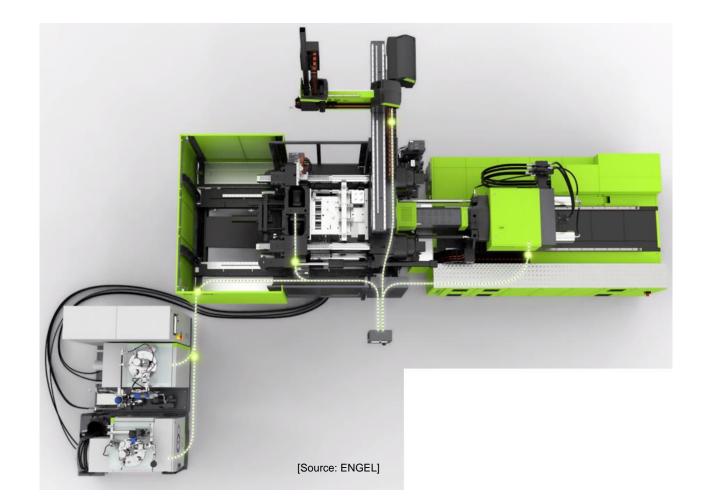
Veredelung der

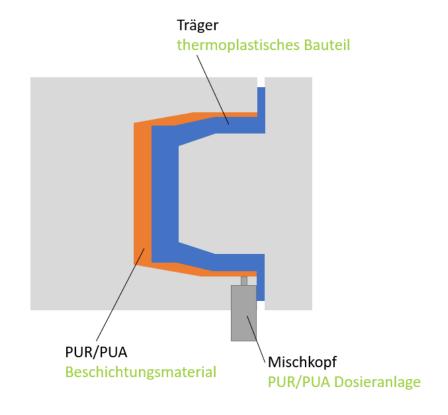
Kunststoffteils in der

Spritzgießzelle

PUR Überfluten

clearmelt


ENGEL clearmelt (PUR Überfluten)


"Lackieren" des Bauteils im Werkzeug

- Hochwertige Oberflächen
- Kratzfestigkeit höher als bei Thermoplasten PUR Selbstheilungseffekt
- Kosteneffiziente Großserienproduktion im Vergleich zur klassischen Mehrschichtlackierung
- Ein-Schritt-Verfahren
- Vollautomatische Produktionszelle
- PUR-Wandstärken von 0,5 mm bis 10 mm, auch farbige PUR Schicht möglich
- Leicht kombinierbar mit Folienhinterspritzen (Foilmelt) und Mehrfarbenspritzguß (Combimelt)

ENGEL clearmelt (PUR Überfluten)

- → Herstellung eines thermoplastischen Trägers im Spritzgussverfahren
- → Positionierung einer neuen Werkzeugformhälfte über den Bauteil
- → Überfluten des thermoplastischen Trägers mit PUR / PUA

[Sources: ENGEL]

ENGEL clearmelt (PUR Überfluten)

Technology partners

PUR Manufacturer

Material Producer PUR/PUA

Foils / Decoration

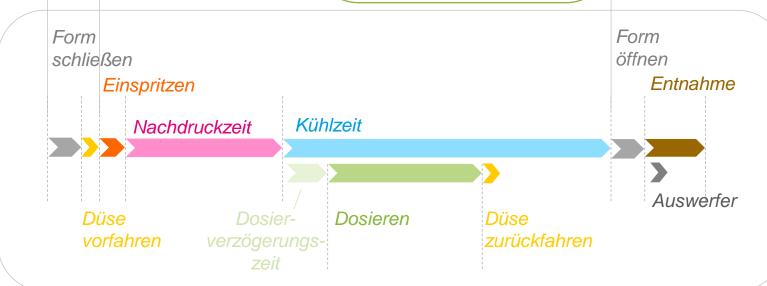
Qualität großer Kunststoffteile im Fokus

Positionierung eines Funktionsträgers in

der Form

Smarte Manipulation der Schmelze

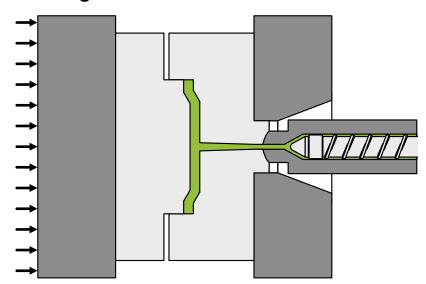
Spritzprägen



Veredelung der Kunststoffteils in der

Spritzgießzelle

Organosheets

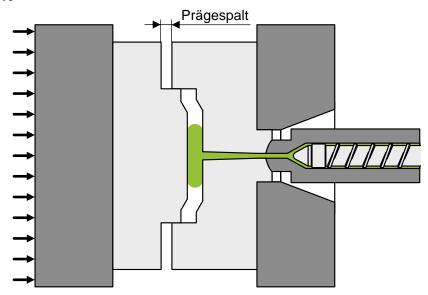


PUR Überfluten

ENGEL coinmelt (Spritzprägen)

Spritzprägen mit Vollfüllung

 Prägebewegung beginnt nach vollständiger Formfüllung



Prozesseigenschaften

- Homogenere Druckverteilung in der Nachdruckphase
- Schwindungskompensation in dickwandigen (Teil-)Bereichen über längere Zeit möglich

Spritzprägen mit Teilfüllung

Mit der Prägebewegung wird die vollständige Formfüllung erzielt

Prozesseigenschaften

- Homogenere Druckverteilung in der Füll- und Nachdruckphase
- Geringere Scherbelastung & geringerer Einspritzdruck

ENGEL coinmelt (Spritzprägen)

Vorteile des Spritzprägens

- Geringerer Spritzdruckbedarf gegenüber Spritzgießen
 - dünnere Wanddicke möglich
 - reduzierter Schließkraftbedarf
- Geringere Scherung bei gleicher Endwanddicke
 - Schonung von eingelegten Folien, Textilien, ...
 - Schonung von scherempfindlichen Materialien
- Geringere Spannungen im Bauteil
 - Weniger Verzug
 - Unterstützt die Erfüllung von Qualitätsanforderungen im Bereich der Optik
- Gleichmäßige Abformung von Strukturen

Qualität großer Kunststoffteile im Fokus

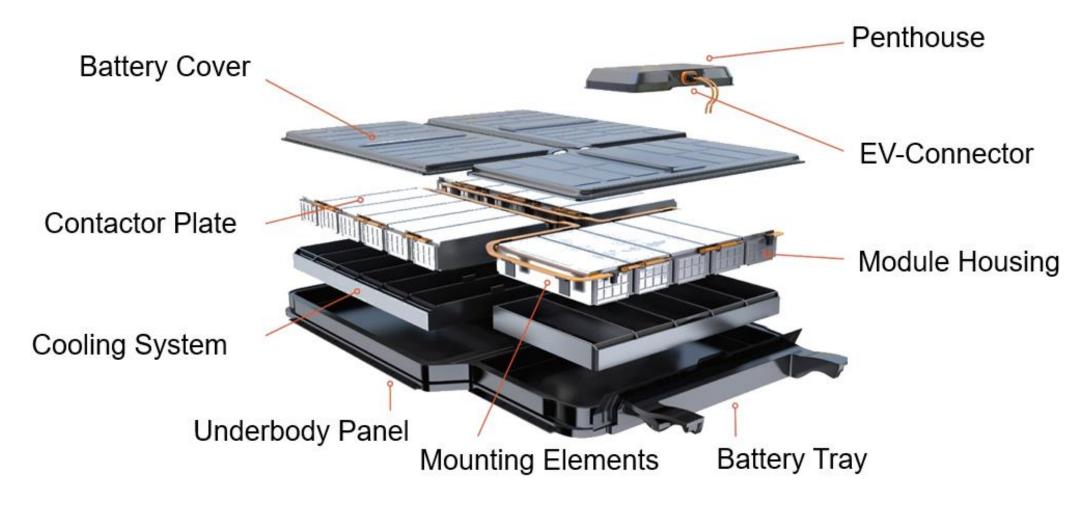
Positionierung eines Funktionsträgers in der Form

Smarte Manipulation der Schmelze

Spritzprägen

Veredelung der Kunststoffteils in der

Spritzgießzelle



PUR Überfluten

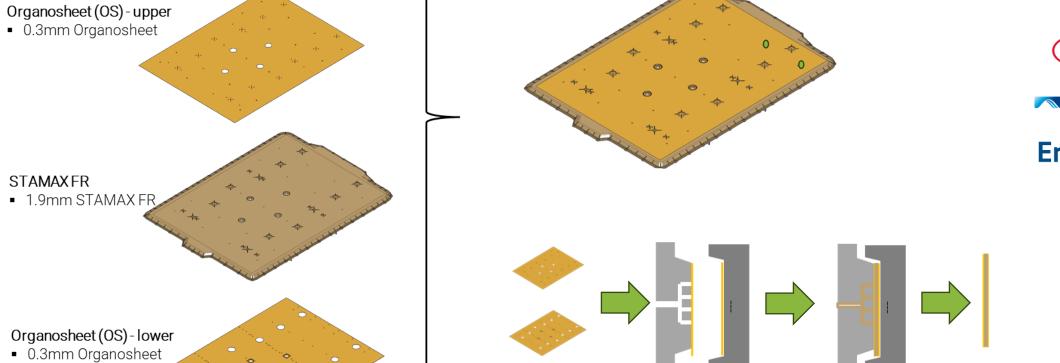
ENGEL organomelt - Leichtbaukomponenten

Umstellung von Metall auf Kunststoff

Kunststoff in Batteriegehäusen bietet Leichtbau, Kosteneinsparungen, Korrosionsschutz, Wärmedämmung, Designflexibilität, Integration und Nachhaltigkeit - ideale Eigenschaften für moderne Elektrofahrzeuge.

ENGEL organomelt - Batteriegehäuse Prozessschema Batterie-Abdeckung

Projektpartner:



Pick up

organosheets

Organosheet Stamax / Injection Molding

Injection

ccoling

molding &

Opening of mold

and part

unloading

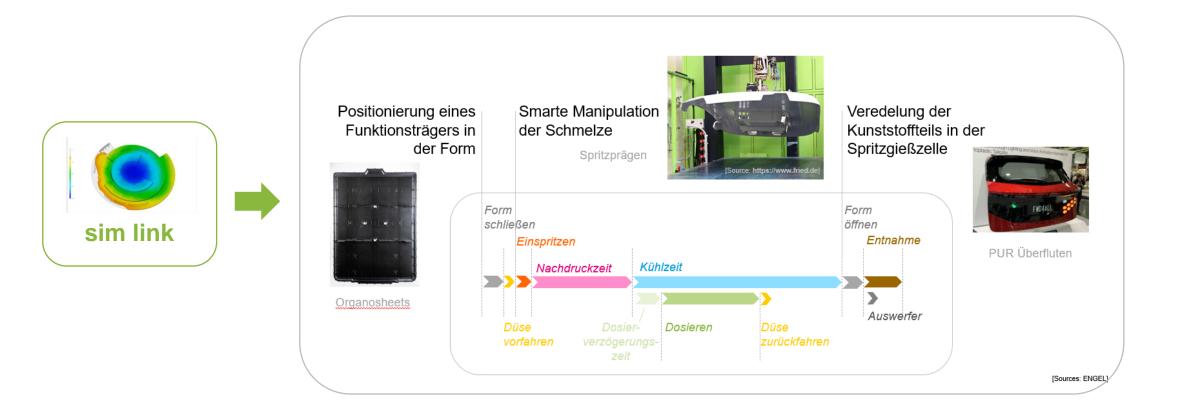
Loading of

closing

open mold &

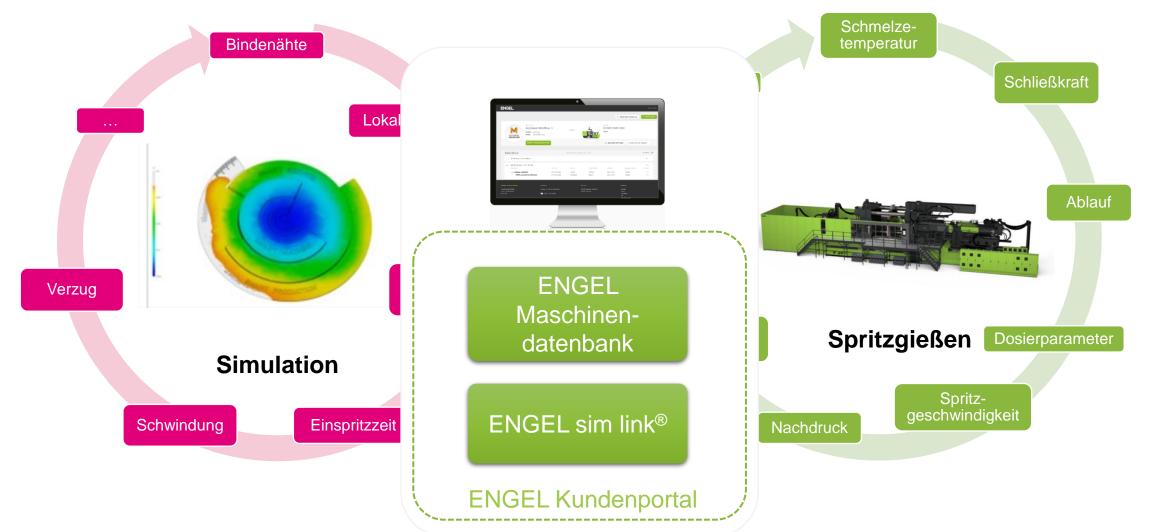
ENGEL organomelt - Batterie-Abdeckung

Aufnahme der Organosheets



Aufnahme 1. Organosheet (mit Saugnäpfen)

Aufnahme 2. Organosheet (mit Saugnäpfen)

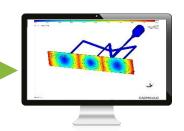


Qualität großer Kunststoffteile im Fokus

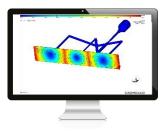
Effizienz in der Produktentwicklung

ENGEL sim link® - Übersetzungstool zwischen Spritzgieß-Simulation und -praxis

ENGEL sim link®


Key features

Werkzeuglayout vorbereitet + Simulationsergebnisse i. O. Maschinenverhalten/-dynamik in die Simulation integrieren



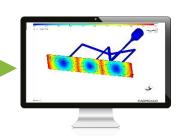
MODIFIKATION

von Simulationseinstellungen/-profilen und Überprüfung der Limits auf Basis der gewählten Maschine

Re-Simulation mit geänderten Einstellungen i. O. Ausgangsdatensatz für Bemusterung exportieren

EXPORT

von Simulationsdaten an die Maschine als Ersteinstellvorschlag



Nach Produktionsstart
Rückführen von realen
Produktionsdaten aus der
Produktion in die Simulation

IMPORT

von realen Produktionsdaten in Autodesk Mouldflow, Moldex3D oder Simcon Cadmould

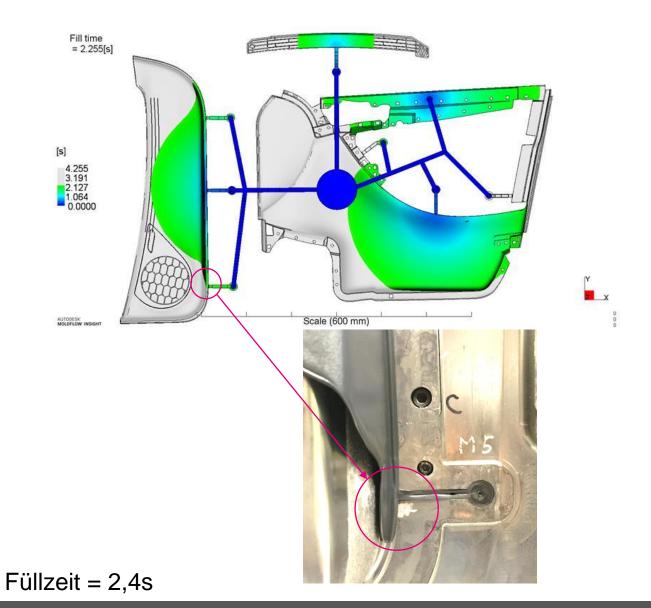
Fallstudie

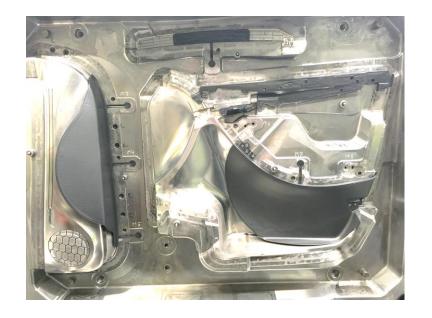
Ausblick in Best Practice von morgen

Rahmenbedingungen:

- Familienwerkzeug für 3 Türmodule von HRS
- Material von Borealis (PP mit 7% Mineral)
- ENGEL duo 12060/1700, 90 mm Schneckendurchmesser
- Spritzgießsimulation mit Autodesk Moldflow

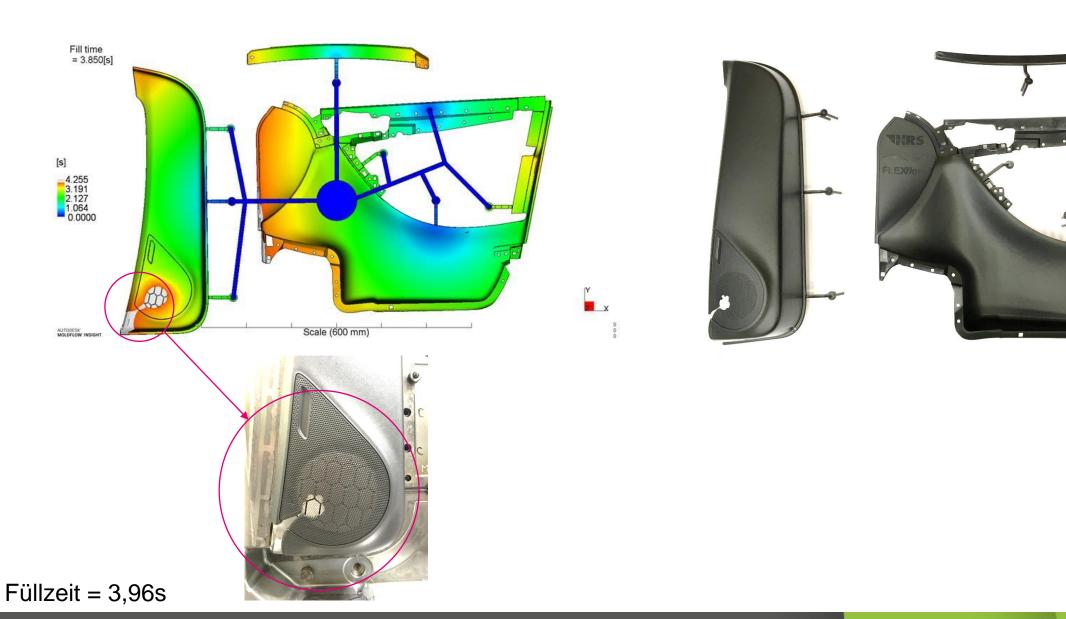
Projektpartner:





ENGEL ENGEL AUSTRIA GmbH | 20

Vergleich Simulation und Realität



[Sources: ENGEL]

Vergleich Simulation und Realität zum Umschaltzeitpunkt

"Giga-Cast" Kunststoff Zusammenfassung

- Duo 5500 combi m im ENGEL Technikum St. Valentin
- "Giga-Cast" Kunststoff
 - PUR Überfluten (ENGEL clearmelt)

 Nachfolgeschritt Lackieren einsparen
 - Spritzprägen (ENGEL coinmelt) Verteilung der Schmelze in der Form durch Werkzeugbewegung
 - Leichtbaukomponenten (ENGEL organomelt) Ersatz von metallischen Fahrzeugteilen durch Kunststoff
- Prozesse beherrschbar
 - Integration der Komponenten der Spritzgießzelle in die Steuerung
 - sim link® Übersetzungstool zwischen Spritzgieß-Simulation und Formgebungsprozess

ENGEL Technikum - DUO 5500 combiM

Injection molding processes

ENGEL clearmelt PUR coating

ENGEL coinmelt
 ICM

Injection Unit 23060 M

 \emptyset 150 mm – 7,2 kg PP GF30

ENGEL foammelt physical & chemical foaming

ENGEL combimelt multi-component

ENGEL Optimelt & glazemelt transparent materials

Additional equipment

- 2x easix up to 240 kg payload
- Infrared oven retrofittable on request
- Mold temperature up to 160 °C

Mold technologies

- Standard molds
- Spin-stack molds
- Multi-color molds

Injection Unit 36000 H

Ø 170 mm – 10,4 kg PP GF30

